
130 the derivative

2.2 Derivatives: Properties and Formulas

This section begins with a look at which functions have derivatives.
Then we’ll examine how to calculate derivatives of elementary combi-
nations of basic functions. By knowing the derivatives of some basic
functions and just a few differentiation patterns, you will be able to
calculate the derivatives of a tremendous variety of functions. This
section contains most—but not quite all—of the general differentiation
patterns you will ever need.

Which Functions Have Derivatives?

A function must be continuous in order to be differentiable.

Theorem:

If a function is differentiable at a point
then it is continuous at that point.

It is vital to understand what this theo-
rem tells us and what it does not tell us:
If a function is differentiable at a point,
then the function is automatically contin-
uous there. If the function is continuous
at a point, then the function may or may
not be differentiable there.

Proof. Assume that the hypothesis ( f is differentiable at the point c) is

true. Then lim
h→0

f (c + h)− f (c)
h

must exist and be equal to f ′(c). We

want to show that f must necessarily be continuous at c, so we need to
show that lim

h→0
f (c + h) = f (c).

It’s not yet obvious why we want to do so, but we can write:

f (c + h) = f (c) +
f (c + h)− f (c)

h
· h

and then compute the limit of both sides of this expression:

lim
h→0

f (c + h) = lim
h→0

f (c) +
f (c + h)− f (c)

h
· h

= lim
h→0

f (c) + lim
h→0

(
f (c + h)− f (c)

h
· h
)

= lim
h→0

f (c) + lim
h→0

(
f (c + h)− f (c)

h

)
· lim

h→0
h

= f (c) + f ′(c) · 0 = f (c)

Therefore f is continuous at c.

We often use the contrapositive form of this theorem, which tells us
about some functions that do not have derivatives.

Contrapositive Form of the Theorem:

If f is not continuous at a point
then f is not differentiable at that point.
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Example 1. Show that f (x) = bxc is not continuous and not differen-
tiable at 2 (see margin figure).

Solution. The one-sided limits lim
x→2+

bxc = 2 and lim
x→2−

bxc = 1 have

different values, so lim
x→2
bxc does not exist. Therefore f (x) = bxc is not

continuous at 2, and as a result it is not differentiable at 2. J

Lack of continuity implies lack of differentiability, but the next exam-
ples show that continuity is not enough to guarantee differentiability.

Example 2. Show that f (x) = |x| is continuous but not differentiable
at x = 0 (see margin figure).

Solution. We know that lim
x→0
|x| = 0 = |0|, so f is continuous at 0, but

in Section 2.1 we saw that |x| was not differentiable at x = 0. J

A function is not differentiable at a cusp or a “corner.”

Example 3. Show that f (x) = 3
√

x = x
1
3 is continuous but not differen-

tiable at x = 0 (see margin figure).

Solution. We can verify that lim
x→0+

3
√

x = lim
x→0−

3
√

x = 0, so lim
x→0

3
√

x =

0 =
3
√

0 so f is continuous at 0. But f ′(x) =
1
3

x−
2
3 =

1

3 3√x2
, which is

undefined at x = 0, so f is not differentiable at 0. J

A function is not differentiable where its tangent line is vertical.

Practice 1. At which integer values of x is the graph of f in the margin
figure continuous? Differentiable?

Graphically, a function is continuous if and only if its graph is
“connected” and does not have any holes or breaks. Graphically, a
function is differentiable if and only if it is continuous and its graph
is “smooth” with no corners or vertical tangent lines.

Derivatives of Elementary Combinations of Functions

We now begin to compute derivatives of more complicated functions
built from combinations of simpler functions.

Example 4. The derivative of f (x) = x is D f (x) = 1 and the derivative
of g(x) = 5 is D g(x) = 0. What are the derivatives of the elementary

combinations: 3 · f , f + g, f − g, f · g and
f
g

?
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Solution. The first three derivatives follow “nice” patterns:

D(3 · f (x)) = D(3x) = 3 = 3 · 1 = 3 ·D( f (x))

D( f (x) + g(x)) = D(x + 5) = 1 = 1 + 0 = D( f (x)) + D(g(x))

D( f (x)− g(x)) = D(x− 5) = 1 = 1− 0 D( f (x))−D(g(x))

yet the other two derivatives fail to follow the same “nice” patterns:
D( f (x) · g(x)) = D(5x) = 5 but D( f (x)) ·D(g(x)) = 1 · 0 = 0, and

D
(

f (x)
g(x)

)
= D

( x
5

)
=

1
5

but
D( f (x))
D(g(x))

=
1
0

is undefined. J

The two very simple functions in the previous example show that,

in general, D( f · g) 6= D( f ) ·D(g) and D
(

f
g

)
6= D( f )

D(g)
.

Practice 2. For f (x) = 6x + 8 and g(x) = 2, compute the derivatives of

3 · f , f + g, f − g, f · g and
f
g

.

Main Differentiation Theorem:

If f and g are differentiable at x, then:

(a) Constant Multiple Rule:

D(k · f (x)) = k ·D( f (x))

(b) Sum Rule:

D( f (x) + g(x)) = D( f (x)) + D(g(x))

(c) Difference Rule:

D( f (x)− g(x)) = D( f (x))−D(g(x))

(d) Product Rule:

D( f (x) · g(x)) = f (x) ·D(g(x)) + g(x) ·D( f (x))

(e) Quotient Rule:

D
(

f (x)
g(x)

)
=

g(x) ·D( f (x))− f (x) ·D(g(x))

[g(x)]2

This theorem says that the simple patterns in the previous example
for constant multiples of functions and sums and differences of func-
tions are true for all differentiable functions. It also includes the correct
patterns for derivatives of products and quotients of differentiable
functions.
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The proofs of parts (a), (b) and (c) of this theorem are straightforward,
but parts (d) and (e) require some clever algebraic manipulations. Let’s
look at some examples before tackling the proof.

Example 5. Recall that D(x2) = 2x and D(sin(x)) = cos(x). Find
D(3 sin(x)) and d

dx (5x2 − 7 sin(x)).

Solution. Computing D(3 sin(x)) requires part (a) of the theorem with
k = 3 and f (x) = sin(x) so D(3 · sin(x)) = 3 ·D(sin(x)) = 3 cos(x),

while
d

dx
(5x2 − 7 sin(x)) uses part (c) of the theorem with f (x) = 5x2

and g(x) = 7 sin(x) so:

d
dx

(5x2 − 7 sin(x)) =
d

dx
(5x2)− d

dx
(7 sin(x))

= 5 · d
dx

(x2)− 7
d

dx
(sin(x))

= 5(2x)− 7(cos(x))

which simplifies to 10x− 7 cos(x). J

Practice 3. Find D(x3 − 5 sin(x)) and
d

dx
(sin(x)− 4x3).

Practice 4. The table below gives the values of functions f and g, as
well as their derivatives, at various points. Fill in the missing values for
D(3 · f (x)), D(2 · f (x) + g(x)) and D(3 · g(x)− f (x)).

x f (x) f ′(x) g(x) g′(x) D(3 f (x)) D(2 f (x) + g(x)) D(3g(x)− f (x))

0 3 −2 −4 3
1 2 −1 1 0
2 4 2 3 1

Practice 5. Use the Main Differentiation Theorem to complete the table.

x f (x) f ′(x) g(x) g′(x) D( f (x) · g(x)) D
(

f (x)
g(x)

)
D
(

g(x)
f (x)

)
0 3 −2 −4 3
1 2 −1 1 0
2 4 2 3 1

Many calculus students find it easier to
remember the product rule in words:
“the first function times the derivative of
the second plus the second function times
the derivative of the first.”

Example 6. Determine D(x2 · sin(x)) and
d

dx

(
x3

sin(x)

)
.

Solution. (a) Use the Product Rule with f (x) = x2 and g(x) = sin(x):

D(x2 · sin(x)) = D( f (x) · g(x)) = f (x) ·D(g(x)) + g(x) ·D( f (x))

= x2 ·D(sin(x)) + sin(x) ·D(x2)

= x2 · cos(x) + sin(x) · 2x = x2 cos(x) + 2x sin(x)
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(b) Use the Quotient Rule with f (x) = x3 and g(x) = sin(x):

d
dx

(
x3

sin(x)

)
=

d
dx

(
f (x)
g(x)

)
=

g(x) ·D( f (x))− f (x) ·D(g(x))

[g(x)]2

=
sin(x) ·D(x3)− x3 ·D(sin(x))

[sin(x)]2

=
sin(x) · 3x2 − x3 · cos(x)

sin2(x)

=
3x2 sin(x)− x3 · cos(x)

sin2(x)

which could also be rewritten in terms of csc(x) and cot(x). J

The quotient rule in words: “the bottom
time the derivative of the top minus the
top times the derivative of the bottom, all
over the bottom squared.”

Practice 6. Determine D((x2 + 1)(7x− 3)),
d
dt

(
3t− 2
5t + 1

)
and D

(
cos(x)

x

)
.

Now that we’ve seen how to use the theorem, let’s prove it.

Proof. The only general fact we have about derivatives is the definition
as a limit, so our proofs here will need to recast derivatives as limits
and then use some results about limits. The proofs involve applications
of the definition of the derivative and results about limits.

(a) Using the derivative definition and the limit laws:

D(k · f (x)) = lim
h→0

k · f (x + h)− k · f (x)
h

= lim
h→0

k · f (x + h)− f (x)
h

= k · lim
h→0

f (x + h)− f (x)
h

= k ·D( f (x))

(b) You try it (see Practice problem that follows).

(c) Once again using the derivative definition and the limit laws:

D( f (x)− g(x)) = lim
h→0

[ f (x + h)− g(x + h)]− [ f (x)− g(x)]
h

= lim
h→0

[ f (x + h)− f (x)]− [g(x + h)− g(x)]
h

= lim
h→0

f (x + h)− f (x)
h

− lim
h→0

g(x + h)− g(x)
h

= D( f (x))−D(g(x))

The proofs of parts (d) and (e) of the theorem are more complicated
but only involve elementary techniques, used in just the right way.
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Sometimes we will omit such computational proofs, but the Prod-
uct and Quotient Rules are fundamental techniques you will need
hundreds of times.

(d) By the hypothesis, f and g are differentiable, so:

lim
h→0

f (x + h)− f (x)
h

= f ′(x)

and:

lim
h→0

g(x + h)− g(x)
h

= g′(x)

Also, both f and g are continuous (why?) so lim
h→0

f (x + h) = f (x)

and lim
h→0

g(x + h) = g(x).

Let P(x) = f (x) · g(x). Then P(x + h) = f (x + h) · g(x + h) and:

D( f (x) · g(x)) = D(P(x)) = lim
h→0

P(x + h)− P(x)
h

= lim
h→0

f (x + h) · g(x + h)− f (x) · g(x)
h

At this stage we need to use some cleverness to add and subtract
f (x) · g(x + h) from the numerator (you’ll see why shortly):

lim
h→0

f (x + h) · g(x + h) + [− f (x) · g(x + h) + f (x) · g(x + h)]− f (x)g(x)
h

We can then split this giant fraction into two more manageable limits:

lim
h→0

f (x + h)g(x + h)− f (x)g(x + h)
h

+ lim
h→0

f (x)g(x + h)− f (x)g(x)
h

and then factor out a common factor from each numerator:

lim
h→0

g(x + h) · f (x + h)− f (x)
h

+ lim
h→0

f (x) · g(x + h)− g(x)
h

Taking limits of each piece (and using the continuity of g(x)) we get:

D( f (x) · g(x)) = g(x) · f ′(x) + f (x) · g′(x) = g ·D f + f ·D g

The steps for a proof of the Quotient Rule appear in Problem 55.

Practice 7. Prove the Sum Rule: D( f (x) + g(x)) = D( f (x)) + D(g(x)).
(Refer to the proof of part (c) for guidance.)

Using the Differentiation Rules

You definitely need to memorize the differentiation rules, but it is vi-
tally important that you also know how to use them. Sometimes it is
clear that the function we want to differentiate is a sum or product of
two obvious functions, but we commonly need to differentiate func-
tions that involve several operations and functions. Memorizing the
differentiation rules is only the first step in learning to use them.
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Example 7. Calculate D(x5 + x · sin(x)).

Solution. This function is more difficult because it involves both an
addition and a multiplication. Which rule(s) should we use—or, more
importantly, which rule should we use first?

First apply the Sum Rule to trade one derivative for two easier ones:

D(x5 + x · sin(x)) = D(x5) + D(x · sin(x))

= 5x4 + [x ·D(sin(x)) + sin(x) ·D(x)]

= 5x4 + x · cos(x) + sin(x)

This last expression involves no more derivatives, so we are done. J

If instead of computing the derivative you were evaluating the func-
tion x5 + x sin(x) for some particular value of x, you would:

• raise x to the 5th power

• calculate sin(x)

• multiply sin(x) by x and, finally,

• add (sum) the values of x5 and x sin(x)

Notice that the final step of your evaluation of f indicates the first rule
to use to calculate the derivative of f .

Practice 8. Which differentiation rule should you apply first for each
of the following?

(a) x · cos(x)− x3 · sin(x) (b) (2x− 3) cos(x)

(a) 2 cos(x)− 7x2
(b)

cos(x) + 3x√
x

Practice 9. Calculate D
(

x2 − 5
sin(x)

)
and

d
dt

(
t2 − 5

t · sin(t)

)
.

Example 8. A mass attached to a spring is oscillating up and down.
Over time, the motion becomes “damped” because of friction and air
resistance, and the height (in feet) of the mass after t seconds is given

by h(t) = 5 +
sin(t)
1 + t

. What are the height and velocity of the weight

after 2 seconds?

Solution. The height is h(2) = 5 +
sin(2)
1 + 2

≈ 5 +
0.909

3
= 5.303 feet

above the ground. The velocity is h′(2), so we must first compute h′(t)
and then evaluate the derivative at time t = 2.

h′(t) = 0 +
(1 + t) ·D(sin(t))− sin(t) ·D(1 + t)

(1 + t)2

=
(1 + t) · cos(t)− sin(t)

(1 + t)2
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so h′(2) =
3 cos(2)− sin(2)

9
≈ −2.158

9
≈ −0.24 feet per second. J

Practice 10. What are the height and velocity of the weight in the
previous example after 5 seconds? What are the height and velocity of
the weight be after a “long time” has passed?

Example 9. Calculate D(x · sin(x) · cos(x)).

Solution. Clearly we need to use the Product Rule, because the only
operation in this function is multiplication. But the Product Rule deals
with a product of two functions and here we have the product of three:
x and sin(x) and cos(x). If, however, we think of our two functions as
f (x) = x · sin(x) and g(x) = cos(x), then we do have the product of
two functions and:

D(x · sin(x) · cos(x)) = D( f (x) · g(x))

= f (x) ·D(g(x)) + g(x) ·D( f (x))

= x sin(x) ·D(cos(x)) + cos(x) ·D(x sin(x))

We are not done, but we have traded one hard derivative for two
easier ones. We know that D(cos(x)) = − sin(x) and we can use the
Product Rule (again) to calculate D(x sin(x)). Then the last line of our
calculation above becomes:

x sin(x) · [− sin(x)] + cos(x) · [x D(sin(x)) + sin(x)D(x)]

and then:
−x sin2(x) + cos(x) [x cos(x) + sin(x)(1)]

which simplifies to −x sin2(x) + x cos2(x) + cos(x) sin(x). J

Evaluating a Derivative at a Point

The derivative of a function f (x) is a new function f ′(x) that tells us
the slope of the line tangent to the graph of f at each point x. To find
the slope of the tangent line at a particular point (c, f (c)) on the graph
of f , we should first calculate the derivative f ′(x) and then evaluate
the function f ′(x) at the point x = c to get the number f ′(c). If you
mistakenly evaluate f first, you get a number f (c), and the derivative
of a constant is always equal to 0.

Example 10. Determine the slope of the line tangent to the graph of
f (x) = 3x + sin(x) at (0, f (0)) and (1, f (1)).

Solution. f ′(x) = D(3x + sin(x)) = D(3x) + D(sin(x)) = 3 + cos(x).
When x = 0, the graph of y = 3x + sin(x) goes through the point
(0, 3(0) + sin(0)) = (0, 0) with slope f ′(0) = 3 + cos(0) = 4. When
x = 1, the graph goes through the point (1, 3(1) + sin(1)) ≈ (1, 3.84)
with slope f ′(1) = 3 + cos(1) ≈ 3.54. J
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Practice 11. Where do f (x) = x2 − 10x + 3 and g(x) = x3 − 12x have
horizontal tangent lines?

Important Information and Results

This section, like the last one, contains a great deal of important infor-
mation that we will continue to use throughout the rest of the course,
so we collect here some of those important results.

Differentiability and Continuity: If a function is differentiable then
it must be continuous. If a function is not continuous then it cannot
be differentiable. A function may be continuous at a point and not
differentiable there.

Graphically: Continuous means “connected”; differentiable means “con-
tinuous, smooth and not vertical.”

Differentiation Patterns:

• [k · f (x)]′ = k · f ′(x)

• [ f (x) + g(x)]′ = f ′(x) + g′(x)

• [ f (x)− g(x)]′ = f ′(x)− g′(x)

• [ f (x) · g(x)]′ = f (x) · g′(x) + g(x) · f ′(x)

•
[

f (x)
g(x)

]′
=

g(x) · f ′(x)− f (x) · g′(x)

[g(x)]2

• The final step used to evaluate a function f indicates the first rule
used to differentiate f .

Evaluating a derivative at a point: First differentiate and then evaluate.

2.2 Problems

1. Use the graph of y = f (x) below to determine:

(a) at which integers f is continuous.
(b) at which integers f is differentiable.

2. Use the graph of y = g(x) below to determine:

(a) at which integers g is continuous.

(b) at which integers g is differentiable.
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3. Use the values given in the table to determine the values of f · g, D( f · g), f
g and D( f

g ).

x f (x) f ′(x) g(x) g′(x) f (x) · g(x) D( f (x) · g(x)) f (x)
g(x) D( f (x)

g(x) )

0 2 3 5 5
1 −3 2 5 −2
2 0 −3 2 4
3 1 −1 0 3

4. Use the values given in the table to determine the values of f · g, D( f · g), f
g and D( f

g ).

x f (x) f ′(x) g(x) g′(x) f (x) · g(x) D( f (x) · g(x)) f (x)
g(x) D( f (x)

g(x) )

0 4 2 3 −3
1 0 3 2 1
2 −2 5 0 −1
3 −1 −2 −3 4

5. Use the information in the figure below to plot
the values of the functions f + g, f · g and f

g and
their derivatives at x = 1, 2 and 3.

6. Use the information in the figure above to plot
the values of the functions 2 f , f − g and g

f and
their derivatives at x = 1, 2 and 3.

7. Calculate D((x− 5)(3x + 7)) by:

(a) using the product rule.

(b) expanding and then differentiating.

Verify that both methods give the same result.

In Problems 8-12, compute each derivative.

8. D(x · sin(x))

9.
d

dx

(
cos(x)

x2

)
10. D(sin(x) + cos(x))

11. (a) D(sin2(x)) (b) D(cos2(x))

12. (a) D(sin(x))

(b)
d

dx
(sin(x) + 7)

(c) D(sin(x)− 8000) and D(sin(x) + k)

13. Find values for the constants a, b and c so that
the parabola f (x) = ax2 + bx + c has f (0) = 0,
f ′(0) = 0 and f ′(10) = 30.

14. If f is a differentiable function, how are the:

(a) graphs of y = f (x) and y = f (x) + k related?

(b) derivatives of f (x) and f (x) + k related?

15. If f and g are differentiable functions that always
differ by a constant ( f (x) − g(x) = k for all x)
then what can you conclude about their graphs?
Their derivatives?

16. If f and g are differentiable functions whose sum
is a constant ( f (x) + g(x) = k for all x) then
what can you conclude about their graphs? Their
derivatives?

17. If the product of f and g is a constant (that is,

f (x) · g(x) = k for all x) then how are
D( f (x))

f (x)

and
D(g(x))

g(x)
related?

18. If the quotient of f and g is a constant (
f (x)
g(x)

= k

for all x) then how are g · f ′ and f · g′ related?
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In Problems 19–28:

(a) calculate f ′(1)

(b) determine where f ′(x) = 0.

19. f (x) = x2 − 5x + 13

20. f (x) = 5x2 − 40x + 73

21. f (x) = 3x− 2 cos(x)

22. f (x) = |x + 2|
23. f (x) = x3 + 9x2 + 6

24. f (x) = x3 + 3x2 + 3x− 1

25. f (x) = x3 + 2x2 + 2x− 1

26. f (x) =
7x

x2 + 4
27. f (x) = x · sin(x) and 0 ≤ x ≤ 5. (You may

need to use the Bisection Algorithm or the “trace”
option on a calculator to approximate where
f ′(x) = 0.)

28. f (x) = Ax2 + Bx + CA, where B and C are con-
stants and A 6= 0 is constant.

29. f (x) = x3 + Ax2 + Bx + C with constants A, B
and C. Can you find conditions on the constants
A, B and C that will guarantee that the graph
of y = f (x) has two distinct “turning points?”
(Here a “turning point” means a place where the
curve changes from increasing to decreasing or
from decreasing to increasing, like vertex of a
parabola.)

Where are the functions in differentiable?

30. f (x) = |x| cos(x)

31. f (x) =
x− 5
x + 3

32. f (x) = tan(x)

33. f (x) =
x2 + x

x2 − 3x
34. f (x) =

∣∣x2 − 4
∣∣

35. f (x) =
∣∣x3 − 1

∣∣
36. f (x) =

{
0 if x < 0

sin(x) if x ≥ 0

37. f (x) =

{
x if x < 0

sin(x) if x ≥ 0

38. For what value(s) of A is

f (x) =

{
Ax− 4 if x < 2
x2 + x if x ≥ 2

differentiable at x = 2?

39. For what values of A and B is

f (x) =

{
Ax + B if x < 1
x2 + x if x ≥ 1

differentiable at x = 1?

40. An arrow shot straight up from ground level (get
out of the way!) with an initial velocity of 128 feet
per second will be at height h(x) = −16x2 + 128x
feet after x seconds (see figure below).

(a) Determine the velocity of the arrow when
x = 0, 1 and 2 seconds.

(b) What is the velocity of the arrow, v(x), at any
time x?

(c) At what time x will the velocity of the arrow
be 0?

(d) What is the greatest height the arrow reaches?

(e) How long will the arrow be aloft?

(f) Use the answer for the velocity in part (b) to
determine the acceleration, a(x) = v′(x), at
any time x.

41. If an arrow is shot straight up from ground level
on the moon with an initial velocity of 128 feet per
second, its height will be h(x) = −2.65x2 + 128x
feet after x seconds. Redo parts (a)–(e) of problem
40 using this new formula for h(x).
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42. In general, if an arrow is shot straight upward
with an initial velocity of 128 feet per second from
ground level on a planet with a constant gravita-
tional acceleration of g feet per second2 then its
height will be h(x) = − g

2 x2 + 128x feet after x
seconds. Answer the questions in problem 40 for
arrows shot on Mars and Jupiter.

object g (ft/sec2) g (cm/sec2)

Mercury 11.8 358

Venus 20.1 887

Earth 32.2 981

moon 5.3 162

Mars 12.3 374

Jupiter 85.3 2601

Saturn 36.6 1117

Uranus 34.4 1049

Neptune 43.5 1325

Source: CRC Handbook of Chemistry and Physics

43. If an object on Earth is propelled upward from
ground level with an initial velocity of v0 feet per
second, then its height after x seconds will be
h(x) = −16x2 + v0x.

(a) Find the object’s velocity after x seconds.
(b) Find the greatest height the object will reach.
(c) How long will the object remain aloft?

44. In order for a 6-foot-tall basketball player to dunk
the ball, the player must achieve a vertical jump of
about 3 feet. Use the information in the previous
problems to answer the following questions.

(a) What is the smallest initial vertical velocity the
player can have and still dunk the ball?

(b) With the initial velocity achieved in part (a),
how high would the player jump on the moon?

45. The best high jumpers in the world manage to
lift their centers of mass approximately 6.5 feet
above the ground.

(a) What is the initial vertical velocity these high
jumpers attain?

(b) How long are these high jumpers in the air?
(c) How high would they lift their centers of mass

on the moon?

46. (a) Find an equation for the line L that is tangent

to the curve y =
1
x

at the point (1, 1).

(b) Determine where L intersects the x-axis and
the y-axis.

(c) Determine the area of the region in the first
quadrant bounded by L, the x-axis and the
y-axis (see figure below).

47. (a) Find an equation for the line L that is tangent

to the curve y =
1
x

at the point (2, 1
2 ).

(b) Graph y = 1
x and L and determine where L

intersects the x-axis and the y-axis.

(c) Determine the area of the region in the first
quadrant bounded by L, the x-axis and the
y-axis.

48. (a) Find an equation for the line L that is tan-

gent to the curve y =
1
x

at the point (p, 1
p )

(assuming p 6= 0).

(b) Determine where L intersects the x-axis and
the y-axis.

(c) Determine the area of the region in the first
quadrant bounded by L, the x-axis and the
y-axis.

(d) How does the area of the triangle in part (c)
depend on the initial point (p, 1

p )?

49. Find values for the coefficients a, b and c so that
the parabola f (x) = ax2 + bx + c goes through
the point (1, 4) and is tangent to the line y =

9x− 13 at the point (3, 14).

50. Find values for the coefficients a, b and c so that
the parabola f (x) = ax2 + bx + c goes through
the point (0, 1) and is tangent to the line y =

3x− 2 at the point (2, 4).
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51. (a) Find a function f so that D( f (x)) = 3x2.
(b) Find another function g with D(g(x)) = 3x2.
(c) Can you find more functions whose deriva-

tives are 3x2?

52. (a) Find a function f so that f ′(x) = 6x + cos(x).
(b) Find another function g with g′(x) = f ′(x).

53. The graph of y = f ′(x) appears below.

(a) Assume f (0) = 0 and sketch a graph of
y = f (x).

(b) Assume f (0) = 1 and graph y = f (x).

54. The graph of y = g′(x) appears below. Assume
that g is continuous.

(a) Assume g(0) = 0 and sketch a graph of
y = g(x).

(b) Assume g(0) = 1 and graph y = g(x).

55. Assume that f and g are differentiable functions
and that g(x) 6= 0. State why each step in the
following proof of the Quotient Rule is valid.

Proof of the Quotient Rule

D
(

f (x)
g(x)

)
= lim

h→0

1
h

[
f (x + h)
g(x + h)

− f (x)
g(x)

]
= lim

h→0

1
h

[
f (x + h)g(x)− g(x + h) f (x)

g(x + h)g(x)

]
= lim

h→0

1
g(x + h)g(x)

[
f (x + h)g(x) + (− f (x)g(x) + f (x)g(x))− g(x + h) f (x)

h

]
= lim

h→0

1
g(x + h)g(x)

[
g(x)

f (x + h)− f (x)
h

+ f (x)
g(x)− g(x + h)

h

]
=

1

[g(x)]2
[
g(x) · f ′(x)− f (x) · g′(x)

]
=

g(x) · f ′(x)− f (x) · g′(x)

[g(x)]2

Practice Answers

1. f is continuous at x = −1, 0, 2, 4, 6 and 7.
f is differentiable at x = −1, 2, 4, and 7.

2. f (x) = 6x + 8 and g(x) = 2 so D( f (x)) = 6 and D(g(x)) = 0.
D(3 · f (x)) = 3 ·D( f (x)) = 3(6) = 18
D( f (x) + g(x)) = D( f (x)) + D(g(x)) = 6 + 0 = 6
D( f (x)− g(x)) = D( f (x))−D(g(x)) = 6− 0 = 6
D( f (x) · g(x)) = f (x)g′(x) + g(x) f ′(x) = (6x + 8)(0) + (2)(6) = 12
D
(

f (x)
g(x)

)
= g(x) f ′(x)− f (x)g′(x)

[g(x)]2
= (2)(6)−(6x+8)(0)

22 = 12
4 = 3
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3. D(x3 − 5 sin(x)) = D(x3)− 5 ·D(sin(x)) = 3x2 − 5 cos(x)
d

dx

(
sin(x)− 4x3

)
=

d
dx

sin(x)− 4 · d
dx

x3 = cos(x)− 12x2

4.

D(3 f (x)) D(2 f (x) + g(x)) D(3g(x)− f (x))

−6 −1 11
−3 −2 1

6 5 1

5.

D( f (x) · g(x)) D
(

f (x)
g(x)

)
D
(

g(x)
f (x)

)
3 · 3 + (−4)(−2) = 17 −4(−2)−(3)(3)

(−4)2 = − 1
16

(3)(3)−(−4)(−2)
32 = 1

9

2 · 0 + 1(−1) = −1 1(−1)−(2)(0)
12 = −1 2(0)−1(−1)

22 = 1
4

4 · 1 + 3 · 2 = 10 3(2)−(4)(1)
32 = 2

9
4(1)−3(2)

42 = − 1
8

6. D((x2 + 1)(7x− 3)) = (x2 + 1)D(7x− 3) + (7x− 3)D(x2 + 1)
= (x2 + 1)(7) + (7x− 3)(2x) = 21x2 − 6x + 7

or: D((x2 + 1)(7x− 3)) = D(7x3 − 3x2 + 7x) = 21x2 − 6x + 7
d
dt

(
3t− 2
5t + 1

)
=

(5t + 1)D(3t− 2)− (3t− 2)D(5t + 1)
(5t + 1)2 =

(5t + 1)(3)− (3t− 2)(5)
(5t + 1)2 =

13
(5t + 1)2

D
(

cos(x)
x

)
=

x D(cos(x))− cos(x)D(x)
x2 =

x(− sin(x))− cos(x)(1)
x2 =

−x · sin(x)− cos(x)
x2

7. Mimicking the proof of the Difference Rule:

D( f (x) + g(x)) = lim
h→0

[ f (x + h) + g(x + h)]− [ f (x) + g(x)]
h

= lim
h→0

[ f (x + h)− f (x)] + [g(x + h)− g(x)]
h

= lim
h→0

f (x + h)− f (x)
h

+ lim
h→0

g(x + h)− g(x)
h

= D( f (x)) + D(g(x))

8. (a) difference rule (b) product rule (c) difference rule (d) quotient rule

9. D
(

x2 − 5sin(x)
)
=

sin(x)D(x2 − 5)− (x2 − 5)D(sin(x))
(sin(x))2 =

sin(x)(2x)− (x2 − 5) cos(x)
sin2(x)

d
dt

(
t2 − 5t · sin(t)

)
=

t · sin(t)D(t2 − 5)− (t2 − 5)D(t · sin(t))
(t · sin(t))2 =

t · sin(t)(2t)− (t2 − 5) [t cos(t) + sin(t)]
t2 · sin2(t)

10. h(5) = 5 + sin(5)
1+5 ≈ 4.84 ft.; v(5) = h′(5) = (1+5) cos(5)−sin(5)

(1+5)2 ≈ 0.074 ft/sec.

“long time”: h(t) = 5 + sin(t)
1+t ≈ 5 feet when t is very large;

h′(t) =
(1 + t) cos(t)− sin(t)

(1 + t)2 =
cos(t)
1 + t

− sin(t)
(1 + t)2 ≈ 0 ft/sec when t is very large.

11. f ′(x) = 2x− 10 so f ′(x) =⇒ 2x− 10 = 0⇒ x = 5.
g′(x) = 3x2 − 12 so g′(x) = 0⇒ 3x2 − 12 = 0⇒ x2 = 4⇒ x = ±2.
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